日本銀行による金融政策の正常化などに伴ない、日本国債の利回りが上昇傾向となる中、債券投資への関心が高まりつつあります。しかし、債券のリターンの特徴には、株式と比べて、わかりにくい点があります。
そこで本稿では、債券の残存期間別の利回りを繋いだ曲線である「イールドカーブ」が、①ある時点で一律に変化した場合と、②一定期間で不変の場合、におけるリターン発生のメカニズムを説明します。なお、「イールドカーブ」については、一般に投資家が、債券の残存期間が長いほど、リスクに見合った高い利回りを求める傾向があるため、右肩上がりであると仮定します。
利回り変動への価格感応度は残存期間に比例
まず、「イールドカーブ」がある時点で一律に変化した場合ですが、前提として、債券の利回りは、現在の債券価格と、投資によって将来発生する資金フローの割引現在価値が等しくなる水準に決まることが重要です。ここで議論をシンプルにするため、債券価格への影響が大きい元本償還の資金フロー(実際には、このほか利息も影響)に注目すると以下のように書けます。
元本の現在価値=元本÷(1+利回り×残存期間)*
↑債券価格の一部分
厳密には複利だが、近似として単利を使用
これにより、利回りが上昇すると元本の現在価値は低下し、債券価格も下落するという具合に、利回りと債券価格が逆向きに動くことがわかります。さらに、上記式では利回り×残存期間となっているため、残存期間が長いほど、利回りの変化が元本の現在価値、ひいては債券価格にもたらす影響が大きいと考えられます。こうしたことから、債券価格の変動は、利回り変化幅や、残存期間の長さに比例し、債券価格の利回り変化への感応度を示す「デュレーション」、さらに、利回りと債券価格の変動の逆向き関係を意味する-1を掛け合わせて、以下のように表せます。
債券価格変動=利回り変化幅×デュレーション×-1
この関係は図【A】のように面積で図示することもでき、残存期間が長い債券ほど、利回り変化の債券価格への影響が大きいことが視覚的にも捉えられます。
一定期間保有によるリターンはキャリーに限らず
続いて「イールドカーブ」が一定期間で不変の場合ですが、仮に債券を1年間保有すると、利息の受け取りなどで、利回り×1年のリターンが得られます。これは、「キャリー」と呼ばれ、「イールドカーブ」が右肩上がりと仮定すると残存期間が長い債券ほど大きくなります。
しかし、この場合のリターンは「キャリー」だけではありません。右肩上がりの「イールドカーブ」の場合、1年間の保有継続で、残存期間が短期化することに伴ない、利回りが低下します。そのため、利回り低下が債券価格の上昇要因であることから、その価格上昇が保有開始から1年後にあったとみて、
利回り低下幅×デュレーション(残存期間が1年短期化したもの)×-1
のリターンが得られると考えられます。これは「ロールダウン」と呼ばれ、残存期間が長い債券では「デュレーション」の長さが寄与し、この効果が大きくなると期待されます。なお、「キャリー」や「ロールダウン」の大きさと残存期間の長短との関係は、図【B】のように面積で図示することもできます。以上のリターンの仕組みを押さえると、債券投資への理解が深まると思われます。
- 本稿でのデュレーションは厳密には修正デュレーションと呼ばれるものです。また、イールドカーブは市況環境によっては右肩上がりとならず、右肩下がりの場合にはロールダウンの代わりに、ロールアップという損失が発生する点に注意が必要です。
- 信頼できると判断した情報をもとにアモーヴァ・アセットマネジメントが作成
- 上記は一定の仮定を置いた場合のイメージであり、将来の運用成果等を約束するものではありません。